
Higher Order Sliding Mode Control: A Control Lyapunov
Function Based Approach

Shyam Kamal
IIT Bombay

Systems and Control Engg.
CRNTS Building, Powai, Mumbai

India
shyam@sc.iitb.ac.in

B. Bandyopadhyay
IIT Bombay

Systems and Control Engg.
CRNTS Building, Powai, Mumbai

India
bijnana@sc.iitb.ac.in

Abstract:The paper presents a new method for higher order sliding mode control using control Lyapunov function
for chain of integrator system with nonlinear uncertainties. The stability proof of the suggested scheme is analyzed
in terms of two Lyapunov functions using appropriate switching function. Using these Lyapunov functions and
switching scheme it is proved that, output and its higher order derivatives converge to origin in finite time. Simu-
lation results illustrate the efficacy of the method.
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1 Introduction

Sliding mode control (SMC) has many attractive fea-
tures such as invariance to matched uncertainties, sim-
plicity in design, robustness against perturbations and
some others [1]-[3]. The characteristic feature of
continuous-time SMC system is that sliding mode oc-
curs on a prescribed manifold(sliding surface), where
switching control is employed to maintain the states
on the surface [4]. Although, high-frequency switch-
ing is theoretically desirable from the robustness point
of view, it is usually hard to achieve in practice be-
cause of physical constraints, such as processor com-
putational speed, A/D and D/A conversions delays,
actuator bandwidth, etc [3]. Also this results in high
frequency oscillations, called chattering. Moreover
for the classical SMC to be applied, the relative de-
gree of the control input with respect to the output
should be equal to one. To overcome these difficul-
ties a new area called “higher order sliding mode” was
looked into. Its main idea is to reduce to zero, not only
the sliding function, but also its high order deriva-
tives. Stress was given to finite time stabilization of
states. Several second order sliding mode algorithms
are described in [4, 9, 11]. In2001, the first arbitrary
order sliding mode controller was proposed [12] by
tuning only one gain parameter. Such controller al-
lowed solving the finite-time output stabilization and
exact disturbance compensation problem for an out-
put with an arbitrary relative degree. There, its finite
time convergence is proved by means of geometrical
(point-to-point transformation) method. However, the

convergence rate is not arbitrarily selected. One of
the main problems of algorithms [12]-[14] is parame-
ter adjustment. Therefore convergence rate is not in
the designer’s hand. Another proposal of arbitrary
higher order sliding mode is reported in [16]. It of-
fers several advantages such as practical applicability
and constructive approach. However, this approach
suffers from a major drawback that the system trajec-
tories reach to only an arbitrary small neighborhood
of the origin in finite time. Similar type of approach
is used in [18]. Based on the information of initial
and final values for each state variable for the con-
trol input the higher order controller is designed. In
[17], the controller is based on integral sliding mode,
but it directly depends on the initial conditions of the
system and complex off-line computations are needed
before starting the control action. In 2007, a new type
of arbitrary-order controller [15], which isrth-sliding
homogeneous, controller was proposed. Considering
all the above mentioned drawbacks, in2009 [19] a
new proposal of higher order sliding mode came into
existence, which was based on combined approach of
geometrical homogeneity based linear controller [21]
and classical sliding mode technique. Since this con-
troller is based on geometrical homogeneity princi-
ple, it is again not possible to calculate exact time of
convergence. Recently for calculation of exact time
of convergence, the geometrical proof of second or-
der sliding mode is replaced by(a)Moreno et.al., [24]
using standard Lyapunov equation and LMI to adjust
gain, and(b) by solving partial differential equation to
derive a Lyapunov function by Polyakov et.al [23]. To
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the best of authors knowledge, only few arbitrary or-
dersliding mode control [20] exists in literature which
is fully based on the Lyapunov approach, which was
an extension of [5]-[8]. In [5]-[8] finite time stabiliza-
tion of chain of integrator without uncertainty based
on controllability function method is reported. But it
is limited to a disturbance free environment. In the
present paper a totally different methodology based
on controllability function is presented, for chain of
integrator system with nonlinear uncertainty.
The main aim of this paper is to propose a new con-
troller, which is fully based on Lyapunov approach, so
that higher order sliding mode establishment is guar-
anteed in exact finite time and which also removes all
the above mentioned drawbacks. Here, the problem
of higher order sliding mode is formulated in terms
of input-output terms using successive derivatives of
sliding variable [10], and then the controller is de-
signed for the finite time stabilization of integrator
chain with nonlinear uncertainties. These are simi-
lar to uncertain linear system with bounded non struc-
tured parametric uncertainties. Therefore, the prob-
lem can be viewed as a lower or dimension manifold
that contains a fully linear system coupled with a non-
linear uncertain integrator. A control Lyapunov func-
tion is used based on controllability function method
[5]-[8] for designing the lower dimensional switching
manifold and discontinuous control (based on clas-
sical sliding mode) in order to ensure the robustness
with respect to the uncertainties.
The organization of the paper is as follows. In the
Section II, the concept of higher-order sliding modes
is introduced. In Section III, a brief review on control-
lability function method for finite time stabilization is
presented. Formulation of higher order sliding mode
control using controllability function method is pre-
sented in Section IV. In Section V, the first, second
and third order sliding mode algorithms are explained
systematically. Numerical examples are presented in
Section VI to illustrate the methods followed by the
concluding Section VII.

2 Concept of Higher-Order Sliding
Modes

First, let us briefly introduce the higher-order SMC
systems. Consider a smooth dynamic affine system

ẋ = f (x) + g (x) ν (1)

wherex ∈ R
n is the system state,y = σ(x, t) is the

system output,ν ∈ R is the scalar control andf (x)
and g (x) are some smooth functions. Higher-order

sliding manifold is given as follow

sk =

{
x :

dk

dtk
σ (x) = 0, ...k= 0, 1, ..., r − 1

}
,

(2)
is a nonempty set and consists locally of Filippov
trajectories, whereσ is a smooth function (this is
considered as the sliding variable). The trajectories
of this provide the successive time derivative ofσ .
The motion on set (2) is calledrth-order sliding mode
[10], which gives the dynamic smoothness degree in
some vicinity of the sliding mode.
The relative degreer of the system is assumed to be
constant and known. In other words, for the first time
the control explicitly appears in therth total time
derivative ofσ. σr = h (t, x) + l (t, x) ν, where

h (t, x) = σr|ν=0,

l (t, x) =
∂

∂ν
σr 6= 0, 0 < Km ≤

∂

∂ν
σr ≤ KM ,

|σr|ν=0 ≤ C0, km, kM , C0 ∈ R
+.

For finite time stabilization of a linear system with
uncertainties at origin,ν takes the form given by
ν = ϕ

(
σ, σ̇, ..., σr−1

)
. Based on this proposal,

several sliding mode controllers (the sub-optimal
controller, twisting controller, the terminal sliding
mode controller and super twisting controller) were
proposed in continuous time. Moreover a general
output based controller forrth relative degree system
has been also developed.

3 A Brief Review On Controllabil-
ity Function Method for finite time
stabilization [6], [7]

Consider the controllable linear system

ẋ = Ax+Bu, (3)

whereA ∈ R
p×p andB ∈ R

p are defined as

A =




0 1 ... 0
...

...
.. .

...

0 0
... 1

0 0 0 0




and BT =
(
0 0 ... 1

)
.

(4)
LetN(Θ) = NT (Θ) be a symmetric positive definite
matrix, which represents the solution of the following
differential equation: [7]

dX

dΘ
=

1

β
Θ

1

α
−1

[
−AX −XAT − βΘ−

1

αX +BBT
]
,

(5)
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where

[N(Θ)]ij = (−1)i+j

(
α

β
Θ

1

α

)2p−i−j+1

(2p− i− j) !

× [(p− i)!(p− j)!× [(α+ 1)...(α+ 2p− i− j + 1)]]−1

i, j = 1, ..., p, (6)

and α > 1, β > 0 are constants andΘ(x) is the
unique positive solution of the equation

Θ1+ 1

α
(2p−1) =

p∑

i,j=1

[F (α, β)]−1
ij Θ

1

p
(i+j−2)

xixj ,

x 6= 0 and Θ(0) = 0. (7)

In (7) [F (α, β)]−1
ij are the elements of[F (α, β)]−1 the

inverse matrix of[F (α, β)] where elements are given
by

[F (α, β)]ij = (−1)i+j

(
α

β

)2p−i−j+1

(2p− i− j) !

× [(p− i)!(p− j)!× [(α+ 1)...(α+ 2p− i− j + 1)]]−1

i, j = 1, ..., p. (8)

Note- Consider the nonlinear system

ẋ = f(x, u). (9)

Assume that the ancillary functionΘ = Θ(x) (con-
trollability function) exists. The function satisfies the
following conditions [8]:-

• Θ(x) > 0 for x 6= 0, Θ(0) = 0.

• Θ(x) is continuous everywhere and continuously
differentiable everywhere except for the origin.

• There exists a numberc > 0, such that the set

Q = {x ∈ R
n : Θ(x) ≤ c} ,

is bounded.

Suppose also that there exists the controlu =
u(x,Θ(x)), such that the differential equation

∂Θ

∂x
f(x, u) ≤ −βΘ1− 1

α (x), α ≥ 1, β > 0, (10)

holds. This means that motion takes place in the neg-
ative direction of the functionΘ(x) i.e., with lesser
magnitude ofΘ(x) and finally reaches the origin in
finite time.
It is shown in [7] that the control obtained using con-
trollability function method stabilize (3) in finite time.
This is briefly discussed in the following theorem [7].

Theorem 1 [7] The feedback control law

u(x) = −
1

2

p∑

j=1

[F (α, β)]−1
pj ×Θ

1

α
(−p+j−1)xj , (11)

where [F (α, β)]−1
pj , j = 1, ..., p are the elements of

the last line of[F (α, β)]−1 andΘ is defined as in (7).
Then all solutionx(t, t0) of the closed loop system af-
ter applying (11) satisfies

lim
t→T

x(t) = 0 where T =
α

β
Θ

1

α (x0), (12)

Thussystem(3) globally exponentially stabilizes at the
origin in finite timeT , where feedback control satisfies
|u(x)| ≤ η0, ∀x ∈ R

p andη0 is positive constant.

Proof:-
In control law (11)[F (α, β)]−1

pj ×Θ
1

α
(−p+j−1) arethe

element of the last line ofN−1(Θ), that is
[
[F (α, β)]−1

p1 Θ
−p

α , ..., [F (α, β)]−1
pp Θ

−1

α

]

= BTN−1(Θ). (13)

Closed loop system (3) becomes after substituting
(11)

ẋ =

(
A−

1

2
BBTN−1(Θ)

)
x. (14)

Remark 2 Without loss of generality, one can sup-
pose thatx(t) is defined in the interval[0, T [. This im-
plies thatΘ 6= 0 and the matricesN(Θ) andN−1(Θ)
exist.

Let the Lyapunov candidate function be defined as fol-
lows

Θ(x) := xTN−1(Θ)x. (15)

Θ(x) is a quadratic positive definite function of class
C1. Introducing the following function,

Ξ(Θ, x) = Θ(x)− xTN−1(Θ)x. (16)

From the equation (15) and (16), it follows that

dΞ = Ξ
′

Θ

∂Θ

∂x
+ Ξ

′

x = 0, (17)

where

Ξ
′

Θ =
∂Ξ

∂Θ
(Θ, x) = 1− xT

d

dΘ
N−1(Θ)x

= xT
(
1

Θ
N−1(Θ)−

d

dΘ
N−1(Θ)

)
x (18)

Ξ
′

x =
∂Ξ

∂x
(Θ, x) = −N−1(Θ)x. (19)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Shyam Kamal, B. Bandyopadhyay

E-ISSN: 2224-2856 40 Volume 9, 2014



Hence
∂Θ

∂x
= −

Ξ
′

x

Ξ
′

Θ

. (20)

Taking the first time derivative of Lyapunov function
(15), we get

Θ̇(x) =

〈
∂Θ

∂x
, ẋ

〉
=

〈
Ξ

′

x

Ξ
′

Θ

(
A−

1

2
BBTN−1Θ

)
x

〉

=
1

Ξ
′

Θ

xT
[
ATN−1(Θ) +N−1(Θ)A

]
x

−
1

Ξ
′

Θ

xT
[
N−1(Θ)BBTN−1(Θ)

]
x. (21)

Note-〈, 〉 denotes the inner product.
From (5) and (21)

ATN−1(Θ) +N−1(Θ)A−N−1(Θ)BBTN−1(Θ)

= βΘ1− 1

α

[
d

dΘ
N−1(Θ)−

1

Θ
N−1(Θ)

]
. (22)

Hence

xT
[
ATN−1(Θ) +N−1(Θ)A−N−1(Θ)BBTN−1(Θ)

]
x

= −βΘ1− 1

αΞ
′

Θ. (23)

From(21)and (23)

Θ̇(x) = −βΘ1− 1

α (x). (24)

which is negative definite becauseα > 1 andβ > 0.
After integration of Eqn.(24), one can get

Θ =

(
1

α
(−βt+W )

)α

. (25)

whereW is an integration constant. For nonzero ini-
tial conditionΘ(x0) 6= 0, hence

W = αΘ
1

α (x0) (26)

Now puttingΘ = 0, one can get

T =
α

β
Θ

1

α (x0)

This implies that the statex(t) ∈ [0, T [ satisfies
x(T ) = 0. Thus, one can conclude thatx(t) con-
verges to zero in finite time. Apart from that we have
to also prove thatx(t) = 0 for all t ≥ T .
From the Lasalle Invariance Principle, it obvi-
ous that the largest invariant set contained inI ={
x ∈ R

p, Θ̇(x)
}
= 0 is the manifoldΘ(x) = 0. Now

from definition ofΘ, Θ(x) = 0 ⇒ x = 0. This
implies that the origin is the largest invariant set con-
tained inI. Sincex(T ) = 0, one can say that that state
x(t) = 0 remains at zero for allt ≥ T . Onlyx(t) = 0
is the largest invariant set ofRp, this implies that all
trajectory converges towards origin in finite timeT .�

4 Higher Order Sliding Mode Con-
trol Using Controllability Function
Method

Consider the nonlinear system (1) with a relative de-
greer with respect toσ. Therth order sliding mode
control with respect toσ is equivalent to the finite time
stabilization to zero of integrator chain with nonlinear
uncertainties [10]

ż1 = A11z1 +A12z2

ż2 = ϕ+ γν, (27)

where z1 =
[
σ ... σ(r−2)

]T
, z2 = σ(r−1), ϕ =

Lr
fσ, γ = LgL

r−1
f σ andA11, A12 defined byA11 =

A, A12 = B. Assume thatϕ = ϕ̂ + ∆ϕ and
γ = γ̂+∆γ are divided into nominal part i.e.̂ϕ andγ̂,
known a priori and uncertain bounded functions∆ϕ
and∆γ. Also uncertain bounded function satisfies the
following inequalities

∣∣∆ϕ−∆γγ̂−1ϕ̂
∣∣ ≤ α̂,

∣∣∆γγ̂−1
∣∣ ≤ 1− β̂ (28)

whereγ̂ is non-singular and there are a priori known
constant̂α, along with priori known constant0 ≤ β̂ ≤
1.
Let the system (27) can be stabilized in finite time by
the control

ν = γ̂−1 [−ϕ̂+ û] (29)

(27) can also be written as

ż1 = A11z1 +A12z2

ż2 =
(
∆ϕ−∆γγ̂−1ϕ̂

)
+
(
1 + ∆γγ̂−1

)
û, (30)

Our main aim to design̂u so that the transformed sys-
tem (30) is finite time stable in spite of any matched
uncertainty.

Theorem 3 The control input̂u which is defined as

û = u−Ksign(s), (31)

and corresponding

ν = γ̂−1 [−ϕ̂+ u−Ksign(s)] (32)

with

K ≥
α̂+ η̂ + (1− β̂) |u|

2− β̂
, (33)

and η̂ > 0 ands ∈ R be a proposed sliding surface
as

s = σ(r−1) − σ(r−1)(t0)−

∫ t

t0

udt, (34)
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wheres(x(t0)) = 0 at initial time t = t0, (so the
system always starts at the sliding manifold), leads
to the establishment ofrth-order sliding mode with
respect toσ by attracting each trajectory in finite time.

proof:-
Taking the Lyapunov candidate function as

V =
1

2
s2 (35)

Thetime derivative of candidate Lyapunov function is
given as:

V̇ = sṡ (36)

Using Eqn.(30), (34) and (31)

V̇ = s
[(
∆ϕ−∆γγ̂−1ϕ̂

)
+
(
1 + ∆γγ̂−1

)
û− u

]

= s
[(
∆ϕ−∆γγ̂−1ϕ̂

)
+
(
1 + ∆γγ̂−1

)
u− u

]

− s
[(
1 + ∆γγ̂−1

)
(Ksign(s))

]

≤ s
[
α̂+ (1− β̂)u− (2− β̂)Ksign(s)

]
(37)

For finite time stabilization to zero of vectorz =
[zT1 zT2 ]

T = [σ σ̇ ... σr−1]T we select the gainK as
(33), such that theη-reachability condition of sliding
mode is satisfied. One gets

sṡ ≤ −η̂ |s| (38)

It means that if inequality and (33) is satisfied, then
(38) conform the finite time reachability tos. During
sliding equivalent control is given bys = ṡ = 0.

(
∆ϕ−∆γγ̂−1ϕ̂

)
+
(
1 + ∆γγ̂−1

)
û− u = 0

⇒
(
∆ϕ−∆γγ̂−1ϕ̂

)
+
(
1 + ∆γγ̂−1

)
û = u (39)

Substituting (39) into (30), the closed loop dynamics
becomes

ż1 = A11z1 +A12z2

ż2 = u, (40)

The above equation becomes similar to chain of inte-
grators free from any uncertainty. Hence we can eas-
ily design the controllability function based controller
for the (40).
�

Remark 4 For feasibility of control law (32) (so that
uncertain chain of integrators is finite time stable),
switching variable (34) must be continuous. The con-
tinuity of switching variable is always guaranteed be-
cause third term of switching variables taken after
integration of controlu (generated for the chain of in-
tegrators without any uncertainty using controllability
function method, although some particular value ofα
andβ controlu may be discontinuous).

Remark 5 Whenever one can try to find the analyti-
cal solution of (7), it is not always simple but fortu-
nately, it can be solved numerically. In fact for given
value ofα andβ Eqn.(7) can be expressed as a poly-
nomial inΘ, for which one can easily find its numeri-
cal value. But in some cases for example if the order
of the system is one, two or three one can obtain the
explicit expression ofΘ for particular value ofα and
β.

Remark 6 In this paper for resolution of solution of
Eqn.(7) forΘ and finding the controlν, polynomial
algorithm of Matlab is used everywhere.

5 Illustrations By First(reaching
law), Second And Third Order
Sliding Mode

The first order sliding mode algorithm(reaching
law) is,

σ̇1 = ϕ̂+∆ϕ+ (γ̂ +∆γ)ν, (41)

where σ1 is the output(sliding variable). Using
Eqns.(6), (7) and (11) we get

N(Θ) =
αΘ

1

α

β(α+ 1)
, N−1(Θ) =

β(α+ 1)

αΘ
1

α

Θ(σ) =
β(α+ 1)σ2

1

αΘ
1

α

, Θ(σ) =

[
α

β
(α+ 1)σ2

1

] α
α+1

.

(42)

u = −
1

2

β(α+ 1)

αΘ
1

α

σ1. (43)

Now using (34), we get

s = σ1 − σ1(t0)−

∫ t

t0

udt (44)

Taking the derivative of first Eqn. of (44) and substi-
tuting the value ofσ1 from (41), one can write

ṡ = ϕ̂+∆ϕ+ (γ̂ +∆γ)ν − u, (45)

Choosing gainK, as par Eqn.(33)η-reachability con-
dition is satisfied. Hences = 0 in finite time and
the equivalent control during sliding is obtained by
putting ṡ = 0. Therefore one can write

σ̇1 = u = −
1

2

β(α+ 1)

αΘ
1

α

σ1. (46)
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PuttingΘ from (42) in the above equation, we get

σ̇1 = −
1

2

β

α
[
α
β
(α+ 1)

] 1

α+1

σ
α−1

α+1

1 . (47)

Obviously (47) is finite time stable forα ≥ 1 and
β > 0. Equation of the controller from Theorem2 is
given by

ν = γ̂−1 [−ϕ̂+ u−Ksign(s)] ,

s = σ1 − σ1(0)−

∫ t

t0

udt

= σ1 − σ1(0)−

∫ t

t0

1

2

β

α
[
α
β
(α+ 1)

] 1

α+1

σ
α−1

α+1

1 dt

(48)

The second order sliding mode algorithm is,

σ̇1 = σ2

σ̇2 = ϕ̂+∆ϕ+ (γ̂ +∆γ)ν, (49)

whereA11 = 0, A12 = 1, σ1 and σ2 be the out-
put(sliding variable) and its derivative respectively.
Using Eqns.(6) and (7), we get

N(Θ) =




2
(

α
β
Θ

1
α

)3

(α+1)(α+2)(α+3) −

(

α
β
Θ

1
α

)2

(α+1)(α+2)

−

(

α
β
Θ

1
α

)2

(α+1)(α+2) −

(

α
β
Θ

1
α

)

(α+1)


 ,

(50)

N−1(Θ) =




(α+2)2(α+3)
(

α
β
Θ

1
α

)3

(α+2)(α+3)
(

α
β
Θ

1
α

)2

(α+2)(α+3)
(

α
β
Θ

1
α

)2

2(α+2)
(

α
β
Θ

1
α

)


 . (51)

Θ(σ) =
(α+ 2)2(α+ 3)σ2

1(
α
β
Θ

1

α

)3 +
2(α+ 2)(α+ 3)σ1σ2(

α
β
Θ

1

α

)2

+
(α+ 2σ2

2(
α
β
Θ

1

α

) . (52)

u(σ) from (11) is given as

u(σ) = −
(α+ 2)(α+ 3)σ1

2
(
α
β
Θ

1

α

)2 −
(α+ 2)σ2(

α
β
Θ

1

α

) . (53)

Now using (34), we get

s = σ2 − σ2(t0)−

∫ t

t0

udt

⇒ σ2 = s+ σ2(t0) +

∫ t

t0

udt (54)

Substitutingσ2 in the first equation of (49) the same
becomeṡσ1 = s + σ2(t0) +

∫ t

t0
udt. Also differenti-

atings and substituting the value ofσ̇2 from (49), one
can write

ṡ = ϕ̂+∆ϕ+ (γ̂ +∆γ)ν − u, (55)

Choosing gainK, as par Eqn.(33)η-reachability con-
dition is satisfied. Hences = 0 in finite time and
during sliding equivalent control can be obtained by
putting ṡ = 0, therefore

σ̇1 = σ2(t0) +

∫ t

t0

udt,

0 = σ2 − σ2(t0)−

∫ t

t0

udt,

σ̇2 = u

⇒ σ̇1 = σ2, σ̇2 = u. (56)

Obviously (56) is finite time stable using controllabil-
ity function method basedu, as discussed in Section
III, for α ≥ 1 andβ > 0. Equation of the controller
from Theorem2 is given by

ν = γ̂−1 [−ϕ̂+ u−Ksign(s)] ,

s = σ2 − σ2(t0)−

∫ t

t0

udt

u = −
(α+ 2)(α+ 3)σ1

2
(
α
β
Θ

1

α

)2 −
(α+ 2)σ2(

α
β
Θ

1

α

) . (57)

The third order sliding mode algorithm is ,

σ̇1 = σ2

σ̇2 = σ3

σ̇3 = ϕ̂+∆ϕ+ (γ̂ +∆γ)ν, (58)

whereA11 =

[
0 1
0 0

]
, AT

12 = [0 1], σ1, σ2 and

σ3 are the output(sliding variable), first derivative of
output and second derivative of output respectively.
Using Eqns.(6) and (7), we get

N(Θ)

=




4
(

α
β
Θ

1
α

)5

(α+1)···(α+5) −
3
(

α
β
Θ

1
α

)4

(α+1)···(α+4)

2
(

α
β
Θ

1
α

)3

(α+1)···(α+3)

−
3
(

α
β
Θ

1
α

)4

(α+1)···(α+4)

2
(

α
β
Θ

1
α

)3

(α+1)···(α+3) −

(

α
β
Θ

1
α

)2

(α+1)(α+2)

2
(

α
β
Θ

1
α

)3

(α+1)···(α+3) −

(

α
β
Θ

1
α

)2

(α+1)(α+2)

(

α
β
Θ

1
α

)

(α+1)




(59)
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Θ1+ 5

α =
3β

α
(α+ 3)σ2

3Θ
4

α

+
6β2

α2
(α+ 3)(α+ 4)σ2σ3Θ

3

α

+
β3

α3
(α+ 3)(α+ 4)

[
(5α+ 16)σ2

2 + 2(α+ 5)σ1σ3
]
Θ

2

α

+
4β

α
(α+ 3)2(α+ 4)(α+ 5)σ1σ2Θ

1

α

+
β5

α5
(α+ 3)2(α+ 4)2(α+ 5)σ2

1 (60)

u(σ) from (11) is given as

u = −
(α+ 3)(α+ 4)(α+ 5)σ1

2
(
α
β
Θ

1

α

)3 −
3(α+ 3)(α+ 4)σ2

2
(
α
β
Θ

1

α

)2

−
3(α+ 3)σ3

2
(
α
β
Θ

1

α

) . (61)

Equationof the controller from Theorem2 is given by

ν = γ̂−1 [−ϕ̂+ u−Ksign(s)]

s = σ3 − σ3(t0)−

∫ t

t0

udt

u = −
(α+ 3)(α+ 4)(α+ 5)σ1

2
(
α
β
Θ

1

α

)3 −
3(α+ 3)(α+ 4)σ2

2
(
α
β
Θ

1

α

)2

−
3(α+ 3)σ3

2
(
α
β
Θ

1

α

) (62)

6 Simulation Results

Stabilization of Variable Length Pendulum using
the Proposed Second Order Controller
Consider an example of a variable-length pendulum
[22] with motions restricted to some vertical plane.
System dynamics is given as

ẋ1 = x2

ẋ2 = −2
Ṙ(t)

R(t)
x2 −

g

R(t)
sin(x1) +

1

mR2(t)
u. (63)

with (x1, x2) the angular positions and velocity of the
rod,m = 1kg the rod mass,g = 9.81ms−2 the gravi-
tational constant,R(t) the distance from the fix point
and the mass, andu the control torque.R(t) is a non-
measured disturbance and given byR(t) = 0.8 +
0.1sin(8t) + 0.3cos(4t),m = 1kg, g = 9.81ms−2.
FunctionR(t) and its time derivativeṘ(t) are such

that0.4515 ≤ R(t) ≤ 1.1485 and−2.5226 ≤ Ṙ(t)
R(t) ≤

1.4989. After applying the proposed controller (57)

with K = 100, α = 2, β = 1, x1(0) = 2, x2(0) =
−2, system state trajectories converges to origin in fi-
nite time as shown in Figure(1).
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Figure 1: Evolution of states w.r.t. time

Simulation Results of the Proposed Third Order
Sliding Mode Controller
For the simulation of the proposed third order sliding
mode controller, initial values of sliding surface and
its derivatives are chosen asσ1 = −0.5, σ2 = 1, σ3 =
−0.1, the controller gainK = 50 and controllability
function parameters asα = 2 andβ = 1. The Figure
(2) shows that the sliding surfaceσ1, it derivativesσ2
andσ3 converge towards origin in finite time.

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

t(Time)

σ 1 σ
2 σ

3

Figure 2: Trajectories of sliding variable and its
derivative w.r.t time
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7 Conclusion

In this paper a generalized higher order sliding mode
controller has been presented. Finite time conver-
gence of the output and its higher order derivatives
was proved by means of the controllability function
based Lyapunov functionΘ(x) = xTN−1(Θ)x and
V = 1

2s
2 using appropriate switching variable. In-

deed, this is the main contribution proposed in this pa-
per. Also, the application of this idea has been tested
on a second order variable length pendulum of rela-
tive degree2. Simulation results verifies the proposed
controller scheme.
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